Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae.

نویسندگان

  • Fangfang Hu
  • Oscar M Aparicio
چکیده

Cyclin-dependent kinases (CDKs) drive the cell cycle through the phosphorylation of substrates that function in genome duplication and cell division. The existence of multiple cyclin subunits and their distinct cell cycle-regulated expression suggests that cyclins impart unique specificities to CDK-substrate interactions that are critical for normal cellular function. This study shows that the combination of early cell cycle expression and deletion of the CDK inhibitor Saccharomyces Wee1 (Swe1) enables the mitotic B-type (Clb) cyclins Clb2, Clb3, and Clb4 of Saccharomyces cerevisiae to initiate S phase with similar effectiveness as the S-phase cyclin Clb5. Although in vivo analysis indicates preferential phosphorylation of a replication substrate by Clb5-Cdk1, this difference is relatively minor compared with the impact of transcriptional control and Swe1 regulation. Indeed, early expressed Clb2-Cdk1 can activate all essential Clb-Cdk substrates in a strain lacking all other Clbs and Swe1. Thus, Swe1 regulation and expression timing are key mechanisms that sequester the broad activity of Clb2-Cdk1 from critical substrates. Furthermore, the ability of Swe1 to inhibit the activity of different B-type cyclins in replication initiation correlates with the normal expression timing of those cyclins, with no apparent in vivo inhibition of Clb5 and Clb6, moderate inhibition of Clb3 and Clb4, and strong inhibition of Clb2. Hence, Swe1 appears to reinforce the temporal activity of cyclins established through transcriptional control. The conserved nature of CDK function suggests that similar mechanisms regulate CDK specificity in multicellular organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae.

Wee1 kinases regulate the cell cycle through inhibitory phosphorylation of cyclin-dependent kinases (CDKs). Eukaryotic cells express multiple CDKs, each having a kinase subunit (Cdk) and a regulatory "cyclin" subunit that function at different stages of the cell cycle to regulate distinct processes. The cyclin imparts specificity to CDK-substrate interactions and also determines whether a parti...

متن کامل

Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae

In response to DNA replication stress in Saccharomyces cerevisiae, the DNA replication checkpoint maintains replication fork stability, prevents precocious chromosome segregation, and causes cells to arrest as large-budded cells. The checkpoint kinases Mec1 and Rad53 act in this checkpoint. Treatment of mec1 or rad53Delta mutants with replication inhibitors results in replication fork collapse ...

متن کامل

Ndd1 Turnover by SCFGrr1 Is Inhibited by the DNA Damage Checkpoint in Saccharomyces cerevisiae

In Saccharomyces cerevisiae, Ndd1 is the dedicated transcriptional activator of the mitotic gene cluster, which includes thirty-three genes that encode key mitotic regulators, making Ndd1 a hub for the control of mitosis. Previous work has shown that multiple kinases, including cyclin-dependent kinase (Cdk1), phosphorylate Ndd1 to regulate its activity during the cell cycle. Previously, we show...

متن کامل

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Transcriptional regulation of CLN3 expression by glucose in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, the transition from the G1 phase of the mitotic cycle into S phase is controlled by a set of G1 cyclins that regulate the activity of the protein kinase encoded by CDC28. Yeast cells regulate progress through the G1/S boundary in response to nutrients, moving quickly through G1 in glucose medium and more slowly in poorer medium. We have examined connections between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 25  شماره 

صفحات  -

تاریخ انتشار 2005